Search results
Results from the WOW.Com Content Network
In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation , named after Niels Henrik Abel who introduced it in 1826.
Using the symbols , for the partial sums of the original series and , for the partial sums of the series after multiplication by , this definition implies that , =, for all , and therefore also , =,, when the limits exist. Therefore if a series is summable, any nonzero scalar multiple of the series is also summable and vice versa: if a series ...
Fix a complex number .If = for and () =, then () = ⌊ ⌋ and the formula becomes = ⌊ ⌋ = ⌊ ⌋ + ⌊ ⌋ +. If () >, then the limit as exists and yields the ...
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence ().As a consequence the partial sums of the series only consists of two terms of () after cancellation.
Another term for it is partial sum. The purposes of a running total are twofold. First, it allows the total to be stated at any point in time without having to sum the entire sequence each time. Second, it can save having to record the sequence itself, if the particular numbers are not individually important.
In mathematical analysis, Cesàro summation (also known as the Cesàro mean [1] [2] or Cesàro limit [3]) assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.
The nth partial sum of the series is the triangular number = = (+), which increases without bound as n goes to infinity. Because the sequence of partial sums fails to converge to a finite limit, the series does not have a sum.