Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Using the above principles, equations that relate a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either temperature or a chemical molecule, have been derived for homomeric and heteromeric proteins, from monomers to trimers and potentially tetramers.
Denaturation midpoint of a protein is defined as the temperature (T m) or concentration of denaturant (C m) at which both the folded and unfolded states are equally populated at equilibrium (assuming two-state protein folding). T m is often determined using a thermal shift assay.
At high temperatures, these interactions cannot form, and a functional protein is denatured. [25] However, it relies on two factors; the type of protein used and the amount of heat applied. The amount of heat applied determines whether this change in protein is permanent or if it can be transformed back to its original form. [26]
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy.
Different proteins are degraded at different rates. Abnormal proteins are quickly degraded, whereas the rate of degradation of normal proteins may vary widely depending on their functions. Enzymes at important metabolic control points may be degraded much faster than those enzymes whose activity is largely constant under all physiological ...
Crystal structure of β-glucosidase from Thermotoga neapolitana (PDB: 5IDI).Thermostable protein, active at 80°C and with unfolding temperature of 101°C. [1]In materials science and molecular biology, thermostability is the ability of a substance to resist irreversible change in its chemical or physical structure, often by resisting decomposition or polymerization, at a high relative ...