enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Extra-close oppositions of Mars happen every 15 to 17 years, when we pass between Mars and the Sun around the time of its perihelion (closest point to the Sun in orbit). The minimum distance between Earth and Mars has been declining over the years, and in 2003 the minimum distance was 55.76 million km, nearer than any such encounter in almost ...

  3. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    Orbit of Mars and other Inner Solar System planets. Mars's average distance from the Sun is roughly 230 million km (143 million mi), and its orbital period is 687 (Earth) days. The solar day (or sol) on Mars is only slightly longer than an Earth day: 24 hours, 39 minutes, and 35.244 seconds. [185]

  4. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.

  5. Timekeeping on Mars - Wikipedia

    en.wikipedia.org/wiki/Timekeeping_on_Mars

    The length of time for Mars to complete one orbit around the Sun in respect to the stars, its sidereal year, is about 686.98 Earth solar days (≈ 1.88 Earth years), or 668.5991 sols. Because of the eccentricity of Mars' orbit, the seasons are not of equal length.

  6. Astronomy on Mars - Wikipedia

    en.wikipedia.org/wiki/Astronomy_on_Mars

    Mars has an axial tilt of 25.19°, quite close to the value of 23.44° for Earth, and thus Mars has seasons of spring, summer, autumn, winter as Earth does. As on Earth, the southern and northern hemispheres have summer and winter at opposing times. However, the orbit of Mars has significantly greater eccentricity than that of Earth. Therefore ...

  7. Areostationary orbit - Wikipedia

    en.wikipedia.org/wiki/Areostationary_orbit

    Substituting the mass of Mars for M and the Martian sidereal day for T and solving for the semimajor axis yields a synchronous orbit radius of 20,428 km (12,693 mi) above the surface of the Mars equator. [3] [4] [5] Subtracting Mars's radius gives an orbital altitude of 17,032 km (10,583 mi). Two stable longitudes exist - 17.92°W and 167.83°E.

  8. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Planet orbiting the Sun in a circular orbit (e=0.0) Planet orbiting the Sun in an orbit with e=0.5 Planet orbiting the Sun in an orbit with e=0.2 Planet orbiting the Sun in an orbit with e=0.8 The red ray rotates at a constant angular velocity and with the same orbital time period as the planet, =.

  9. Areosynchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Areosynchronous_orbit

    An areosynchronous orbit that is equatorial (in the same plane as the equator of Mars), circular, and prograde (rotating about Mars's axis in the same direction as the planet's surface) is known as an areostationary orbit (AEO). To an observer on the surface of Mars, the position of a satellite in AEO would appear to be fixed in a constant ...