enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    The impulse delivered by a varying force is the integral of the force F with respect to time: =. The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s).

  3. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    Specific impulse should not be confused with total thrust. Thrust is the force supplied by the engine and depends on the propellant mass flow through the engine. Specific impulse measures the thrust per propellant mass flow. Thrust and specific impulse are related by the design and propellants of the engine in question, but this relationship is ...

  4. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    The impulse response from a simple audio system. Showing, from top to bottom, the original impulse, the response after high frequency boosting, and the response after low frequency boosting. In signal processing and control theory , the impulse response , or impulse response function ( IRF ), of a dynamic system is its output when presented ...

  5. Newton-second - Wikipedia

    en.wikipedia.org/wiki/Newton-second

    The newton-second (also newton second; symbol: N⋅s or N s) [1] is the unit of impulse in the International System of Units (SI). It is dimensionally equivalent to the momentum unit kilogram-metre per second (kg⋅m/s). One newton-second corresponds to a one-newton force applied for one second.

  6. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  7. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    For example, to calculate the dynamics of a billiard ball being struck, one can approximate the force of the impact by a Dirac delta. In doing so, one not only simplifies the equations, but one also is able to calculate the motion of the ball, by only considering the total impulse of the collision, without a detailed model of all of the elastic ...

  8. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  9. Duhamel's integral - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_integral

    If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)