enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q. We also know that ...

  3. Pressure drop - Wikipedia

    en.wikipedia.org/wiki/Pressure_drop

    For example, halving a pipe's diameter would increase the pressure drop by a factor of = (e.g. from 2 psi to 64 psi), assuming no change in flow. Pressure drop in piping is directly proportional to the length of the piping—for example, a pipe with twice the length will have twice the pressure drop, given the same flow rate. [8]

  4. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    Q is the rate of flow (expressed in US gallons per minute), SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure ...

  5. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    [4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.

  6. Darcy's law - Wikipedia

    en.wikipedia.org/wiki/Darcy's_law

    In the integral form, the total pressure drop = is in units (), and is the length of the sample in units (), the Darcy's volumetric flow rate , or discharge, is also defined in units (/) and the cross-sectional area in units (). A number of these parameters are used in alternative definitions below.

  7. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Normally, Hagen–Poiseuille flow implies not just the relation for the pressure drop, above, but also the full solution for the laminar flow profile, which is parabolic. However, the result for the pressure drop can be extended to turbulent flow by inferring an effective turbulent viscosity in the case of turbulent flow, even though the flow ...

  8. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.

  9. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.