Search results
Results from the WOW.Com Content Network
C and C++ perform such promotion for objects of Boolean, character, wide character, enumeration, and short integer types which are promoted to int, and for objects of type float, which are promoted to double. Unlike some other type conversions, promotions never lose precision or modify the value stored in the object. In Java:
convert a double to a float: d2i 8e 1000 1110 value → result convert a double to an int d2l 8f 1000 1111 value → result convert a double to a long dadd 63 0110 0011 value1, value2 → result add two doubles daload 31 0011 0001 arrayref, index → value load a double from an array dastore 52 0101 0010 arrayref, index, value →
The C language provides the four basic arithmetic type specifiers char, int, float and double (as well as the boolean type bool), and the modifiers signed, unsigned, short, and long. The following table lists the permissible combinations in specifying a large set of storage size-specific declarations.
If a decimal string with at most 15 significant digits is converted to the IEEE 754 double-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 double-precision number is converted to a decimal string with at least ...
On x86 and x86-64, the most common C/C++ compilers implement long double as either 80-bit extended precision (e.g. the GNU C Compiler gcc [13] and the Intel C++ Compiler with a /Qlong‑double switch [14]) or simply as being synonymous with double precision (e.g. Microsoft Visual C++ [15]), rather than as quadruple precision.
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
Minifloats (in Survey of Floating-Point Formats) OpenEXR site; Half precision constants from D3DX; OpenGL treatment of half precision; Fast Half Float Conversions; Analog Devices variant (four-bit exponent) C source code to convert between IEEE double, single, and half precision can be found here; Java source code for half-precision floating ...
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.