Search results
Results from the WOW.Com Content Network
The sun being above the horizon is a necessary condition for direct sunlight; but it is not a sufficient condition, as something else may be casting a shadow, e.g., the moon in the case of an eclipse. The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false".
We also have the rule that 10 x + y is divisible iff x + 4 y is divisible by 13. For example, to test the divisibility of 1761 by 13 we can reduce this to the divisibility of 461 by the first rule. Using the second rule, this reduces to the divisibility of 50, and doing that again yields 5.
In ordinary language terms, if both p and q are true, then the conjunction p ∧ q is true. For all other assignments of logical values to p and to q the conjunction p ∧ q is false. It can also be said that if p, then p ∧ q is q, otherwise p ∧ q is p.
If the premise of the lemma does not hold, that is, if p is a composite number, its consequent may be either true or false. For example, in the case of p = 10, a = 4, b = 15, composite number 10 divides ab = 4 × 15 = 60, but 10 divides neither 4 nor 15. This property is the key in the proof of the fundamental theorem of arithmetic.
These examples, one from mathematics and one from natural language, illustrate the concept of vacuous truths: "For any integer x, if x > 5 then x > 3." [11] – This statement is true non-vacuously (since some integers are indeed greater than 5), but some of its implications are only vacuously true: for example, when x is the integer 2, the statement implies the vacuous truth that "if 2 > 5 ...
The predicate calculus goes a step further than the propositional calculus to an "analysis of the inner structure of propositions" [4] It breaks a simple sentence down into two parts (i) its subject (the object (singular or plural) of discourse) and (ii) a predicate (a verb or possibly verb-clause that asserts a quality or attribute of the object(s)).
If x is true, then the result of expression x → y is taken to be that of y (e.g. if x is true and y is false, then x → y is also false). But if x is false, then the value of y can be ignored; however, the operation must return some Boolean value and there are only two choices. So by definition, x → y is true when x is false (relevance ...
X and Y are two whole numbers greater than 1, and Y > X. Their sum is not greater than 100. S and P are two mathematicians (and consequently perfect logicians); S knows the sum X + Y and P knows the product X × Y. Both S and P know all the information in this paragraph. In the following conversation, both participants are always telling the truth: