Search results
Results from the WOW.Com Content Network
The haploid circular chromosome in E. coli consists of ~ 4.6 x 10 6 bp. If DNA is relaxed in the B form, it would have a circumference of ~1.5 millimeters (0.332 nm x 4.6 x 10 6). However, a large DNA molecule such as the E. coli chromosomal DNA does not remain a straight rigid molecule in a suspension. [5]
E. coli is a gram-negative, facultative anaerobe, nonsporulating coliform bacterium. [18] Cells are typically rod-shaped, and are about 2.0 μm long and 0.25–1.0 μm in diameter, with a cell volume of 0.6–0.7 μm 3. [19] [20] [21] E. coli stains gram-negative because its cell wall is composed of a thin peptidoglycan layer and an outer membrane.
Bacteriophage Lambda binds to an E. coli cell by means of its J protein in the tail tip. The J protein interacts with the maltose outer membrane porin (the product of the lamB gene) of E. coli, [9] a porin molecule, which is part of the maltose operon. The linear phage genome is injected through the outer membrane.
More than five decades ago, Jacob, Brenner, and Cuzin proposed the replicon hypothesis to explain the regulation of chromosomal DNA synthesis in E. coli. [18] The model postulates that a diffusible, trans-acting factor, a so-called initiator, interacts with a cis-acting DNA element, the replicator, to promote replication onset at a nearby origin.
Genetic systems have also been developed which allow the production of recombinant proteins using E. coli. One of the first useful applications of recombinant DNA technology was the manipulation of E. coli to produce human insulin. [26] Modified E. coli have been used in vaccine development, bioremediation, and production of immobilised enzymes ...
Since integration of the F-plasmid into the E. coli chromosome is a rare spontaneous occurrence, and since the numerous genes promoting DNA transfer are in the plasmid genome rather than in the bacterial genome, it has been argued that conjugative bacterial gene transfer, as it occurs in the E. coli Hfr system, is not an evolutionary adaptation ...
During the formation of the transcription bubble in E.coli and most other bacteria, the RNA polymerase holoenzyme (RNAP) binds to a promoter of an exposed DNA strand in a process mediated by sigma (σ) initiation factors factors. [9] The double helix DNA is unwound and a short nucleotide sequence is made accessible on each strand. [7]
DnaA is a protein that activates initiation of DNA replication in bacteria. [1] Based on the Replicon Model, a positively active initiator molecule contacts with a particular spot on a circular chromosome called the replicator to start DNA replication. [2] It is a replication initiation factor which promotes the unwinding of DNA at oriC. [1]