Search results
Results from the WOW.Com Content Network
Heat of vaporization of water from melting to critical temperature. Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C)—the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of ...
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.
Water can remain in a liquid state at high temperatures in the deep ocean or underground. For example, temperatures exceed 205 °C (401 °F) in Old Faithful, a geyser in Yellowstone National Park. [66] In hydrothermal vents, the temperature can exceed 400 °C (752 °F). [67] At sea level, the boiling point of water is 100 °C (212 °F). As ...
At a temperature of 25 °C, the salinity of 35 g/kg and 1 atm pressure, the density of seawater is 1023.6 kg/m 3. [7] [8] Deep in the ocean, under high pressure, seawater can reach a density of 1050 kg/m 3 or higher. The density of seawater also changes with salinity.
The refractive index of water at 20 °C for visible light is 1.33. [1] The refractive index of normal ice is 1.31 (from List of refractive indices ). In general, an index of refraction is a complex number with real and imaginary parts, where the latter indicates the strength of absorption loss at a particular wavelength.
For example, the density of water increases between its melting point at 0 °C and 4 °C; similar behavior is observed in silicon at low temperatures. The effect of pressure and temperature on the densities of liquids and solids is small.
Here "standard conditions" refers to temperatures of 25 °C and pressures of 1 atmosphere. Where data points are unavailable for 25 °C or 1 atmosphere, values are given at a nearby temperature/pressure. The temperatures corresponding to each data point are stated explicitly.
Under standard atmospheric conditions (25 °C and pressure of 1 bar), the dynamic viscosity of air is 18.5 μPa·s, roughly 50 times smaller than the viscosity of water at the same temperature. Except at very high pressure, the viscosity of air depends mostly on the temperature.