Search results
Results from the WOW.Com Content Network
In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...
For example, several lossy image and sound compression methods employ the discrete Fourier transform: the signal is cut into short segments, each is transformed, and then the Fourier coefficients of high frequencies, which are assumed to be unnoticeable, are discarded. The decompressor computes the inverse transform based on this reduced number ...
Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers. IML++ is a C++ library for solving linear systems of equations, capable of dealing with dense, sparse, and distributed matrices. IT++ is a C++ library for linear algebra (matrices and vectors), signal processing and communications ...
Pythran compiles a subset of Python 3 to C++ . [165] RPython can be compiled to C, and is used to build the PyPy interpreter of Python. The Python → 11l → C++ transpiler [166] compiles a subset of Python 3 to C++ . Specialized: MyHDL is a Python-based hardware description language (HDL), that converts MyHDL code to Verilog or VHDL code.
An example FFT algorithm structure, using a decomposition into half-size FFTs A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz. A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT).
ML.NET is a free-software machine-learning library for the C# programming language. [4] [5] NAG Library is an extensive software library of highly optimized numerical-analysis routines for various programming environments. O-Matrix is a proprietary licensed matrix programming language for mathematics, engineering, science, and financial analysis.
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
Array programming primitives concisely express broad ideas about data manipulation. The level of concision can be dramatic in certain cases: it is not uncommon [example needed] to find array programming language one-liners that require several pages of object-oriented code.