enow.com Web Search

  1. Including results for

    matlab numerical gradient

    Search only for matlab numeric gradient

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  4. Nonlinear conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_conjugate...

    Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...

  5. LOBPCG - Wikipedia

    en.wikipedia.org/wiki/LOBPCG

    Kantorovich in 1948 proposed calculating the smallest eigenvalue of a symmetric matrix by steepest descent using a direction = of a scaled gradient of a Rayleigh quotient = (,) / (,) in a scalar product (,) = ′, with the step size computed by minimizing the Rayleigh quotient in the linear span of the vectors and , i.e. in a locally optimal manner.

  6. Adjoint state method - Wikipedia

    en.wikipedia.org/wiki/Adjoint_state_method

    The adjoint state method is a numerical method for efficiently computing the gradient of a function or operator in a numerical optimization problem. [1] It has applications in geophysics, seismic imaging, photonics and more recently in neural networks. [2] The adjoint state space is chosen to simplify the physical interpretation of equation ...

  7. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.

  8. Derivation of the conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    In numerical linear algebra, the conjugate gradient method is an iterative method for numerically solving the linear system = where is symmetric positive-definite, without computing explicitly.

  9. Conjugate gradient squared method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_squared...

    In numerical linear algebra, the conjugate gradient squared method (CGS) is an iterative algorithm for solving systems of linear equations of the form =, particularly in cases where computing the transpose is impractical. [1]