Search results
Results from the WOW.Com Content Network
GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5] GPT-2 was created as a "direct scale-up" of GPT-1 [6] with a ten-fold increase in both its parameter count and the size of its training dataset. [5]
On August 3, 2022, the company announced the Private Hub, an enterprise version of its public Hugging Face Hub that supports SaaS or on-premises deployment. [ 9 ] In February 2023, the company announced partnership with Amazon Web Services (AWS) which would allow Hugging Face's products available to AWS customers to use them as the building ...
Apache 2.0 [5] An early and influential language model. [6] Encoder-only and thus not built to be prompted or generative. [7] Training took 4 days on 64 TPUv2 chips. [8] T5: October 2019: Google 11 [9] 34 billion tokens [9] Apache 2.0 [10] Base model for many Google projects, such as Imagen. [11] XLNet: June 2019: Google: 0.340 [12] 33 billion ...
GPT-J or GPT-J-6B is an open-source large language model (LLM) developed by EleutherAI in 2021. [1] As the name suggests, it is a generative pre-trained transformer model designed to produce human-like text that continues from a prompt.
Llama (Large Language Model Meta AI, formerly stylized as LLaMA) is a family of large language models (LLMs) released by Meta AI starting in February 2023. [2] [3] The latest version is Llama 3.3, released in December 2024.
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [3]
DBRX is an open-sourced large language model (LLM) developed by Mosaic ML team at Databricks, released on March 27, 2024. [1] [2] [3] It is a mixture-of-experts transformer model, with 132 billion parameters in total. 36 billion parameters (4 out of 16 experts) are active for each token. [4]
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.