enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5] GPT-2 was created as a "direct scale-up" of GPT-1 [6] with a ten-fold increase in both its parameter count and the size of its training dataset. [5]

  3. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    On August 3, 2022, the company announced the Private Hub, an enterprise version of its public Hugging Face Hub that supports SaaS or on-premises deployment. [ 9 ] In February 2023, the company announced partnership with Amazon Web Services (AWS) which would allow Hugging Face's products available to AWS customers to use them as the building ...

  4. List of large language models - Wikipedia

    en.wikipedia.org/wiki/List_of_large_language_models

    Apache 2.0 [5] An early and influential language model. [6] Encoder-only and thus not built to be prompted or generative. [7] Training took 4 days on 64 TPUv2 chips. [8] T5: October 2019: Google 11 [9] 34 billion tokens [9] Apache 2.0 [10] Base model for many Google projects, such as Imagen. [11] XLNet: June 2019: Google: 0.340 [12] 33 billion ...

  5. GPT-J - Wikipedia

    en.wikipedia.org/wiki/GPT-J

    GPT-J or GPT-J-6B is an open-source large language model (LLM) developed by EleutherAI in 2021. [1] As the name suggests, it is a generative pre-trained transformer model designed to produce human-like text that continues from a prompt.

  6. Llama (language model) - Wikipedia

    en.wikipedia.org/wiki/Llama_(language_model)

    Llama (Large Language Model Meta AI, formerly stylized as LLaMA) is a family of large language models (LLMs) released by Meta AI starting in February 2023. [2] [3] The latest version is Llama 3.3, released in December 2024.

  7. BLOOM (language model) - Wikipedia

    en.wikipedia.org/wiki/BLOOM_(language_model)

    BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [3]

  8. DBRX - Wikipedia

    en.wikipedia.org/wiki/DBRX

    DBRX is an open-sourced large language model (LLM) developed by Mosaic ML team at Databricks, released on March 27, 2024. [1] [2] [3] It is a mixture-of-experts transformer model, with 132 billion parameters in total. 36 billion parameters (4 out of 16 experts) are active for each token. [4]

  9. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.