Search results
Results from the WOW.Com Content Network
Experimental data, however, can never prove that the hypotheses (h) is true, but relies on an inductive inference by measuring the probability of the hypotheses relative to the empirical data. The proof is in the rational demonstration of using the logic of inference, math, testing, and deductive reasoning of significance. [1] [2] [6]
In carefully designed scientific experiments, null results can be interpreted as evidence of absence. [7] Whether the scientific community will accept a null result as evidence of absence depends on many factors, including the detection power of the applied methods, the confidence of the inference, as well as confirmation bias within the community.
The origin of the phrase "Lies, damned lies, and statistics" is unclear, but Mark Twain attributed it to Benjamin Disraeli [1] "Lies, damned lies, and statistics" is a phrase describing the persuasive power of statistics to bolster weak arguments, "one of the best, and best-known" critiques of applied statistics. [2]
Statistics, when used in a misleading fashion, can trick the casual observer into believing something other than what the data shows. That is, a misuse of statistics occurs when a statistical argument asserts a falsehood. In some cases, the misuse may be accidental. In others, it is purposeful and for the gain of the perpetrator.
Misuse of statistics can be both inadvertent and intentional, and the book How to Lie with Statistics, [72] by Darrell Huff, outlines a range of considerations. In an attempt to shed light on the use and misuse of statistics, reviews of statistical techniques used in particular fields are conducted (e.g. Warne, Lazo, Ramos, and Ritter (2012)).
Popper's theory presents an asymmetry in that evidence can prove a theory wrong, by establishing facts that are inconsistent with the theory. In contrast, evidence cannot prove a theory correct because other evidence, yet to be discovered, may exist that is inconsistent with the theory. [9]
Additionally, the change to 0.005 would increase the likelihood of false negatives, whereby the effect being studied is real, but the test fails to show it. [ 63 ] In 2019, over 800 statisticians and scientists signed a message calling for the abandonment of the term "statistical significance" in science, [ 64 ] and the ASA published a further ...
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.