enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

  3. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    A ray through the unit hyperbola = in the point (,), where is twice the area between the ray, the hyperbola, and the -axis. The earliest and most widely adopted symbols use the prefix arc-(that is: arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth), by analogy with the inverse circular functions (arcsin, etc.).

  4. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    For any point in the plane, one can define coordinates x and y by dropping a perpendicular onto the x-axis. x will be the label of the foot of the perpendicular. y will be the distance along the perpendicular of the given point from its foot (positive on one side and negative on the other). Then the distance between two such points will be

  5. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    There are however different coordinate systems for hyperbolic plane geometry. All are based around choosing a point (the origin) on a chosen directed line (the x-axis) and after that many choices exist. The Lobachevsky coordinates x and y are found by dropping a perpendicular onto the x-axis. x will be the label of the foot of the perpendicular.

  6. Cosh(x) - Wikipedia

    en.wikipedia.org/?title=Cosh(x)&redirect=no

    What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code

  7. Hyperboloid - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid

    Otherwise, the axes are uniquely defined (up to the exchange of the x-axis and the y-axis). There are two kinds of hyperboloids. In the first case (+1 in the right-hand side of the equation): a one-sheet hyperboloid, also called a hyperbolic hyperboloid. It is a connected surface, which has a negative Gaussian curvature at every point.

  8. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and ⁠ θ 2 / 2 ⁠ helps trim the red away.

  9. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...