Search results
Results from the WOW.Com Content Network
The subgame perfect equilibrium in addition to the Nash equilibrium requires that the strategy also is a Nash equilibrium in every subgame of that game. This eliminates all non-credible threats , that is, strategies that contain non-rational moves in order to make the counter-player change their strategy.
It would take approximately 21 k-levels to reach 0, the Nash equilibrium of the game. The guessing game depends on three elements: (1) the subject's perceptions of the level 0 would play; (2) the subject's expectations about the cognitive level of other players; and (3) the number of in-game reasoning steps that the subject is capable of ...
A Nash equilibrium is a strategy profile (a strategy profile specifies a strategy for every player, e.g. in the above prisoners' dilemma game (cooperate, defect) specifies that prisoner 1 plays cooperate and prisoner 2 plays defect) in which every strategy played by every agent (agent i) is a best response to every other strategy played by all the other opponents (agents j for every j≠i) .
John Forbes Nash Jr. (June 13, 1928 – May 23, 2015), known and published as John Nash, was an American mathematician who made fundamental contributions to game theory, real algebraic geometry, differential geometry, and partial differential equations.
In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games (Friedman 1971). [1] The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game.
The solutions are normally based on the concept of Nash equilibrium, and these solutions are reached by using methods listed in Solution concept. Most solutions used in non-cooperative game are refinements developed from Nash equilibrium, including the minimax mixed-strategy proved by John von Neumann. [8] [13] [20]
Nash equilibrium is a game equilibrium where it is not rational for any player to deviate from their present strategy, provided that the others adhere to their strategies. An ESS is a state of game dynamics where, in a very large population of competitors, another mutant strategy cannot successfully enter the population to disturb the existing ...
He proved that every congestion game has a Nash equilibrium in pure strategies (aka pure Nash equilibrium, PNE). During the proof, he in fact proved that every congestion game is an exact potential game. Later, Monderer and Shapley [2] proved a converse result: any game with an exact potential function is equivalent to some congestion game ...