enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    In equation above, positive post-test probability is calculated using the likelihood ratio positive, and the negative post-test probability is calculated using the likelihood ratio negative. Odds are converted to probabilities as follows: [18]

  3. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.

  4. Pre- and post-test probability - Wikipedia

    en.wikipedia.org/wiki/Pre-_and_post-test_probability

    Diagram relating pre- and post-test probabilities, with the green curve (upper left half) representing a positive test, and the red curve (lower right half) representing a negative test, for the case of 90% sensitivity and 90% specificity, corresponding to a likelihood ratio positive of 9, and a likelihood ratio negative of 0.111.

  5. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    The false positive rate (FPR) is the proportion of all negatives that still yield positive test outcomes, i.e., the conditional probability of a positive test result given an event that was not present. The false positive rate is equal to the significance level. The specificity of the test is equal to 1 minus the false positive rate.

  6. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    Two, if the actual classification is positive and the predicted classification is negative (1,0), this is called a false negative result because the positive sample is incorrectly identified by the classifier as being negative.

  7. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    Specificity (true negative rate) is the probability of a negative test result, conditioned on the individual truly being negative. If the true status of the condition cannot be known, sensitivity and specificity can be defined relative to a " gold standard test " which is assumed correct.

  8. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.

  9. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that the degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.