enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...

  3. Bernstein polynomial - Wikipedia

    en.wikipedia.org/wiki/Bernstein_polynomial

    Bernstein polynomials thus provide one way to prove the Weierstrass approximation theorem that every real-valued continuous function on a real interval [a, b] can be uniformly approximated by polynomial functions over . [7] A more general statement for a function with continuous k th derivative is

  4. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.

  5. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified ...

  6. Cubic Hermite spline - Wikipedia

    en.wikipedia.org/wiki/Cubic_Hermite_spline

    The Hermite formula is applied to each interval (, +) separately. The resulting spline will be continuous and will have continuous first derivative. Cubic polynomial splines can be specified in other ways, the Bezier cubic being the most common. However, these two methods provide the same set of splines, and data can be easily converted between ...

  7. Non-uniform rational B-spline - Wikipedia

    en.wikipedia.org/wiki/Non-uniform_rational_B-spline

    A NURBS curve. (See also: the animated creation of a NURBS spline.) A NURBS surface. Non-uniform rational basis spline (NURBS) is a mathematical model using basis splines (B-splines) that is commonly used in computer graphics for representing curves and surfaces.

  8. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    The geometry of a single bicubic patch is thus completely defined by a set of 16 control points. These are typically linked up to form a B-spline surface in a similar way as Bézier curves are linked up to form a B-spline curve. Simpler Bézier surfaces are formed from biquadratic patches (m = n = 2), or Bézier triangles.

  9. Variation diminishing property - Wikipedia

    en.wikipedia.org/wiki/Variation_diminishing_property

    Using the above points, we say that since the Bézier curve B is the limit of these polygons as r goes to , it will have fewer intersections with a given plane than R i for all i, and in particular fewer intersections that the original control polygon R. This is the statement of the variation diminishing property.