enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parameter identification problem - Wikipedia

    en.wikipedia.org/wiki/Parameter_identification...

    This is symbolically indicated with the values 1, 2 and 3 for Z. With the quantities supplied and demanded being equal, the observations on quantity and price are the three white points in the graph: they reveal the supply curve. Hence the effect of Z on demand makes it possible to identify the (positive) slope of the supply equation. The ...

  3. Multi-objective optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_optimization

    Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.

  4. Identifiability - Wikipedia

    en.wikipedia.org/wiki/Identifiability

    A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables.

  5. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...

  6. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    Many optimization problems can be equivalently formulated in this standard form. For example, the problem of maximizing a concave function can be re-formulated equivalently as the problem of minimizing the convex function . The problem of maximizing a concave function over a convex set is commonly called a convex optimization problem.

  7. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...

  8. Argument of a function - Wikipedia

    en.wikipedia.org/wiki/Argument_of_a_function

    In mathematics, an argument of a function is a value provided to obtain the function's result. It is also called an independent variable. [1]For example, the binary function (,) = + has two arguments, and , in an ordered pair (,).

  9. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    Each such problem is the subproblem obtained by dropping a sequence of variables , …, from the original problem, along with the constraints containing them. After the problem on variables x i + 1 , … , x n {\displaystyle x_{i+1},\ldots ,x_{n}} is solved, its optimal cost can be used as an upper bound while solving the other problems,