Search results
Results from the WOW.Com Content Network
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
Using a factory method to create instances of a class (factory method pattern) Storing the instances in a map, and returning the same instance to each request for an instance with same parameters (multiton pattern) Using lazy initialization to instantiate the object the first time it is requested (lazy initialization pattern)
The extraneous intermediate list structure can be eliminated with the continuation-passing style technique, foldr f z xs == foldl (\ k x-> k. f x) id xs z; similarly, foldl f z xs == foldr (\ x k-> k. flip f x) id xs z ( flip is only needed in languages like Haskell with its flipped order of arguments to the combining function of foldl unlike e ...
In Python 3.x the range() function [28] returns a generator which computes elements of the list on demand. Elements are only generated when they are needed (e.g., when print(r[3]) is evaluated in the following example), so this is an example of lazy or deferred evaluation:
The summatory function, with leading terms removed, for < The summatory function, with leading terms removed, for < The summatory function, with leading terms removed, for <, graphed as a distribution or histogram. The vertical scale is not constant left to right; click on image for a detailed description.
As a baseline algorithm, selection of the th smallest value in a collection of values can be performed by the following two steps: . Sort the collection; If the output of the sorting algorithm is an array, retrieve its th element; otherwise, scan the sorted sequence to find the th element.
The subset sum problem (SSP) is a decision problem in computer science.In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1]
(Here we use the standard notations and conventions of lambda calculus: Y is a function that takes one argument f and returns the entire expression following the first period; the expression . ( ) denotes a function that takes one argument x, thought of as a function, and returns the expression ( ), where ( ) denotes x applied to itself ...