Search results
Results from the WOW.Com Content Network
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
Using a factory method to create instances of a class (factory method pattern) Storing the instances in a map, and returning the same instance to each request for an instance with same parameters (multiton pattern) Using lazy initialization to instantiate the object the first time it is requested (lazy initialization pattern)
The extraneous intermediate list structure can be eliminated with the continuation-passing style technique, foldr f z xs == foldl (\ k x-> k. f x) id xs z; similarly, foldl f z xs == foldr (\ x k-> k. flip f x) id xs z ( flip is only needed in languages like Haskell with its flipped order of arguments to the combining function of foldl unlike e ...
In Python 3.x the range() function [28] returns a generator which computes elements of the list on demand. Elements are only generated when they are needed (e.g., when print(r[3]) is evaluated in the following example), so this is an example of lazy or deferred evaluation:
(Here we use the standard notations and conventions of lambda calculus: Y is a function that takes one argument f and returns the entire expression following the first period; the expression . ( ) denotes a function that takes one argument x, thought of as a function, and returns the expression ( ), where ( ) denotes x applied to itself ...
This quantity can be visualized as the count of the number of lattice points fenced off by a hyperbolic surface in k dimensions. Thus, for k = 2, D(x) = D 2 (x) counts the number of points on a square lattice bounded on the left by the vertical-axis, on the bottom by the horizontal-axis, and to the upper-right by the hyperbola jk = x.
The subset sum problem (SSP) is a decision problem in computer science.In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1]
Each possible contiguous sub-array is represented by a point on a colored line. That point's y-coordinate represents the sum of the sample. Its x-coordinate represents the end of the sample, and the leftmost point on that colored line represents the start of the sample. In this case, the array from which samples are taken is [2, 3, -1, -20, 5, 10].