Search results
Results from the WOW.Com Content Network
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
Using a factory method to create instances of a class (factory method pattern) Storing the instances in a map, and returning the same instance to each request for an instance with same parameters (multiton pattern) Using lazy initialization to instantiate the object the first time it is requested (lazy initialization pattern)
The extraneous intermediate list structure can be eliminated with the continuation-passing style technique, foldr f z xs == foldl (\ k x-> k. f x) id xs z; similarly, foldl f z xs == foldr (\ x k-> k. flip f x) id xs z ( flip is only needed in languages like Haskell with its flipped order of arguments to the combining function of foldl unlike e ...
In Python 3.x the range() function [28] returns a generator which computes elements of the list on demand. Elements are only generated when they are needed (e.g., when print(r[3]) is evaluated in the following example), so this is an example of lazy or deferred evaluation:
In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function . The various studies of the behaviour of the divisor function are sometimes called divisor problems .
(Here we use the standard notations and conventions of lambda calculus: Y is a function that takes one argument f and returns the entire expression following the first period; the expression . ( ) denotes a function that takes one argument x, thought of as a function, and returns the expression ( ), where ( ) denotes x applied to itself ...
Starting with Python 3.12, the built-in "sum()" function uses the Neumaier summation. [ 25 ] In the Julia language, the default implementation of the sum function does pairwise summation for high accuracy with good performance, [ 26 ] but an external library provides an implementation of Neumaier's variant named sum_kbn for the cases when ...
When z is 1, the function is called the sigma function or sum-of-divisors function, [1] [3] and the subscript is often omitted, so σ(n) is the same as σ 1 (n) (OEIS: A000203). The aliquot sum s ( n ) of n is the sum of the proper divisors (that is, the divisors excluding n itself, OEIS : A001065 ), and equals σ 1 ( n ) − n ; the aliquot ...