Search results
Results from the WOW.Com Content Network
Hyperchloremic acidosis is a form of metabolic acidosis associated with a normal anion gap, a decrease in plasma bicarbonate concentration, and an increase in plasma chloride concentration [1] (see anion gap for a fuller explanation).
Metabolic alkalosis is an acid-base disorder in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate (HCO − 3), or alternatively a direct result of increased bicarbonate concentrations.
In renal compensation, plasma bicarbonate rises 3.5 mEq/L for each increase of 10 mm Hg in PaCO 2. The expected change in serum bicarbonate concentration in respiratory acidosis can be estimated as follows: [citation needed] Acute respiratory acidosis: HCO 3 − increases 1 mEq/L for each 10 mm Hg rise in PaCO 2.
Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance.Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidneys to excrete excess acids. [5]
[1] [2] The delta ratio is a formula that can be used to assess elevated anion gap metabolic acidosis and to evaluate whether mixed acid base disorder (metabolic acidosis) is present. The list of agents that cause high anion gap metabolic acidosis is similar to but broader than the list of agents that cause a serum osmolal gap .
Lactic acidosis is commonly found in people who are unwell, such as those with severe heart and/or lung disease, a severe infection with sepsis, the systemic inflammatory response syndrome due to another cause, severe physical trauma, or severe depletion of body fluids. [3]
A 2004 statement by the European Society for Paediatric Endocrinology and the Lawson Wilkins Pediatric Endocrine Society (for children) uses slightly different cutoffs, where mild DKA is defined by pH 7.20–7.30 (bicarbonate 10–15 mmol/L), moderate DKA by pH 7.1–7.2 (bicarbonate 5–10) and severe DKA by pH<7.1 (bicarbonate below 5).
Hyperparathyroidism – can cause hyperchloremia and increase renal bicarbonate loss, which may result in a normal anion gap metabolic acidosis. Patients with hyperparathyroidism may have a lower than normal pH, slightly decreased PaCO2 due to respiratory compensation, a decreased bicarbonate level, and a normal anion gap.