Search results
Results from the WOW.Com Content Network
UML class diagram of a double-ended queue. The basic operations on a deque are enqueue and dequeue on either end. Also generally implemented are peek operations, which return the value at that end without dequeuing it. Names vary between languages; major implementations include:
Container classes are expected to implement CRUD-like methods to do the following: create an empty container (constructor); insert objects into the container; delete objects from the container; delete all the objects in the container (clear); access the objects in the container; access the number of objects in the container (count).
Circular buffering makes a good implementation strategy for a queue that has fixed maximum size. Should a maximum size be adopted for a queue, then a circular buffer is a completely ideal implementation; all queue operations are constant time. However, expanding a circular buffer requires shifting memory, which is comparatively costly.
Such data structures may have not specified a fixed capacity limit besides memory constraints. Queue overflow results from trying to add an element onto a full queue and queue underflow happens when trying to remove an element from an empty queue. A bounded queue is a queue limited to a fixed number of items. [1]
Representation of a FIFO queue with enqueue and dequeue operations. Depending on the application, a FIFO could be implemented as a hardware shift register, or using different memory structures, typically a circular buffer or a kind of list. For information on the abstract data structure, see Queue (data structure).
is_empty: check whether the queue has no elements. insert_with_priority: add an element to the queue with an associated priority. pull_highest_priority_element: remove the element from the queue that has the highest priority, and return it. This is also known as "pop_element(Off)", "get_maximum_element" or "get_front(most)_element".
The class writer has the option to rename the inherited features to separate them. Multiple inheritance is a frequent occurrence in Eiffel development; most of the effective classes in the widely used EiffelBase library of data structures and algorithms, for example, have two or more parents. [7] Go prevents the diamond problem at compile time.
When a function executes, it may add some of its local state data to the top of the stack; when the function exits it is responsible for removing that data from the stack. At a minimum, a thread's stack is used to store the location of a return address provided by the caller in order to allow return statements to return to the correct location.