Search results
Results from the WOW.Com Content Network
A myofibril (also known as a muscle fibril or sarcostyle) [1] is a basic rod-like organelle of a muscle cell. [2] Skeletal muscles are composed of long, tubular cells known as muscle fibers, and these cells contain many chains of myofibrils. [3]
It contains mostly myofibrils (which are composed of sarcomeres), but its contents are otherwise comparable to those of the cytoplasm of other cells. It has a Golgi apparatus near the nucleus , mitochondria just inside the cell membrane ( sarcolemma ), and a smooth endoplasmic reticulum (specialized for muscle function and called the ...
Each muscle cell contains myofibrils composed of actin and myosin myofilaments repeated as a sarcomere. [3] Many nuclei are present in each muscle cell placed at regular intervals beneath the sarcolemma. Based on their contractile and metabolic phenotypes, skeletal muscle can be classified as slow-oxidative (Type I) or fast-oxidative (Type II). [1]
The unusual microscopic anatomy of a muscle cell gave rise to its terminology. The cytoplasm in a muscle cell is termed the sarcoplasm; the smooth endoplasmic reticulum of a muscle cell is termed the sarcoplasmic reticulum; and the cell membrane in a muscle cell is termed the sarcolemma. [9]
The sarcoplasmic reticulum is a network of the tubules that extend throughout muscle cells, wrapping around (but not in direct contact with) the myofibrils (contractile units of the cell). Cardiac and skeletal muscle cells contain structures called transverse tubules (T-tubules) , which are extensions of the cell membrane that travel into the ...
T-tubules (transverse tubules) are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells.With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.
This releases tropomyosin, exposing active sites of the thin filament, actin. There are several mechanisms directly linked to the terminal cisternae which facilitate excitation-contraction coupling. When excitation of the membrane arrives at the T-tubule nearest the muscle fiber, a dihydropyridine channel (DHP channel) is activated. [2]
Muscle architecture is the physical arrangement of muscle fibers at the macroscopic level that determines a muscle's mechanical function. There are several different muscle architecture types including: parallel, pennate and hydrostats.