Search results
Results from the WOW.Com Content Network
The therm (symbol, thm) is a non-SI unit of heat energy equal to 100,000 British thermal units (BTU), [1] and approximately 105 megajoules, 29.3 kilowatt-hours, 25,200 kilocalories and 25.2 thermies. One therm is the energy content of approximately 100 cubic feet (2.83 cubic metres) of natural gas at standard temperature and pressure .
The energy content (high or low heating value) of a volume of natural gas varies with the composition of the natural gas, which means there is no universal conversion factor for energy to volume. 1 cubic foot (28 litres) of average natural gas yields ≈ 1,030 Btu (between 1,010 Btu and 1,070 Btu, depending on quality, when burned)
British thermal unit: Btu Btu 1.0 Btu (1.1 kJ) BTU BTU million British thermal units: MMBtu MMBtu 1.0 MMBtu (1.1 GJ) e6BTU BTU British thermal unit (IT) Btu-IT Btu IT ...
The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1.
In most countries, U-value is expressed in SI units, as watts per square metre-kelvin: W/(m 2 ⋅K) In the United States, U-value is expressed as British thermal units (Btu) per hour-square feet-degrees Fahrenheit: Btu/(h⋅ft 2 ⋅°F) Within this article, U-values are expressed in SI unless otherwise noted.
One GGE of natural gas is 126.67 cubic feet (3.587 m 3) at standard conditions. This volume of natural gas has the same energy content as one US gallon of gasoline (based on lower heating values: 900 BTU/cu ft (9.3 kWh/m 3) of natural gas and 114,000 BTU/US gal (8.8 kWh/L) for gasoline). [22]
For example, the NIST document has 1 square mile = 2.589 988 E+06 square meters. The convert template has 1 square mile = 2,589,988.110336 square meters. Values for the fundamental physical constants come from the NIST Reference on Constants, Units, and Uncertainty, either the 2010 or the 2014 version. The 2018 version is in preparation.
Tables and datafiles are usually presented at a standard pressure of 1 bar or 1 atm, but in the case of steam and other industrially important gases, pressure may be included as a variable. Function values depend on the state of aggregation of the substance, which must be defined for the value to have any meaning.