enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  3. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  4. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A worked example of performing a convolution. The convolution has stride 1, zero-padding, with kernel size 3-by-3. The convolution kernel is a discrete Laplacian operator. The convolutional layer is the core building block of a CNN.

  5. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    Convolutional code with any code rate can be designed based on polynomial selection; [15] however, in practice, a puncturing procedure is often used to achieve the required code rate. Puncturing is a technique used to make a m/n rate code from a "basic" low-rate (e.g., 1/n) code. It is achieved by deleting of some bits in the encoder output.

  6. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    It would be calculated, for example, as: [(input width 227 - kernel width 11) / stride 4] + 1 = [(227 - 11) / 4] + 1 = 55. Since the kernel output is the same length as width, its area is 55×55.) LeNet has several common motifs of modern convolutional neural networks, such as convolutional layer, pooling layer and full connection layer.

  7. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    The models and the code were released under Apache 2.0 license on GitHub. [4] An individual Inception module. On the left is a standard module, and on the right is a dimension-reduced module. A single Inception dimension-reduced module. The Inception v1 architecture is a deep CNN composed of 22 layers. Most of these layers were "Inception modules".

  8. Higher-order singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Higher-order_singular...

    In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition.It may be regarded as one type of generalization of the matrix singular value decomposition.

  9. Serial concatenated convolutional codes - Wikipedia

    en.wikipedia.org/wiki/Serial_concatenated...

    Fig 1 is an example of a SCCC. Fig. 1. SCCC Encoder. The example encoder is composed of a 16-state outer convolutional code and a 2-state inner convolutional code linked by an interleaver. The natural code rate of the configuration shown is 1/4, however, the inner and/or outer codes may be punctured to achieve higher code rates as needed.