Search results
Results from the WOW.Com Content Network
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
= ¯ (′) where B μ is the U(1) gauge field; Y W is the weak hypercharge (the generator of the U(1) group); W μ is the three-component SU(2) gauge field; and the components of τ are the Pauli matrices (infinitesimal generators of the SU(2) group) whose eigenvalues give the weak isospin.
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).
The conversion is based on a Traveling-Wave Direct Energy Converter (TWDEC). A gyrotron converter first guides fusion product ions as a beam into a 10-meter long microwave cavity filled with a 10-tesla magnetic field, where 155 MHz microwaves are generated and converted to a high voltage DC output through rectennas .
The formula calculator concept can be applied to all types of calculator, including arithmetic, scientific, statistics, financial and conversion calculators. The calculation can be typed or pasted into an edit box of: A software package that runs on a computer, for example as a dialog box. An on-line formula calculator hosted on a web site.
where w C, w H, w S, w O refer to the mass fraction of each element in the fuel oil, sulfur burning to SO 2, and AFR mass refers to the air-fuel ratio in mass units. For 1 kg of fuel oil containing 86.1% C, 13.6% H, 0.2% O, and 0.1% S the stoichiometric mass of air is 14.56 kg, so AFR = 14.56. The combustion product mass is then 15.56 kg.
The law can be formulated mathematically in the fields of fluid mechanics and continuum mechanics, where the conservation of mass is usually expressed using the continuity equation, given in differential form as + =, where is the density (mass per unit volume), is the time, is the divergence, and is the flow velocity field.