Ad
related to: laminar flow vs plug flow gas pump temperature- Ductless Fume Hoods
Draws Contamination Away.
Clean Air Back into Laboratory.
- Laminar Flow Hoods
Multiplex™ ULPA Filtration
Horizontal & Vertical Laminar Flow
- Browse All Our Products
High Efficiency Product Line
Protect from Hazardous Particulates
- Product Literature
Ductless - Laminar Flow - Forensic
Biological Safety Cabinets
- Ductless Fume Hoods
Search results
Results from the WOW.Com Content Network
In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. The plug flow model assumes there is no boundary layer adjacent to the inner wall of the pipe.
A laminar flow reactor (LFR) is a type of chemical reactor that uses laminar flow to control reaction rate, and/or reaction distribution. LFR is generally a long tube with constant diameter that is kept at constant temperature. Reactants are injected at one end and products are collected and monitored at the other. [1]
A typical plug flow reactor could be a tube packed with some solid material (frequently a catalyst). Typically these types of reactors are called packed bed reactors or PBR's. Sometimes the tube will be a tube in a shell and tube heat exchanger. When a plug flow model can not be applied, the dispersion model is usually employed. [2] [3]
A laminar flow reactor (LFR) is a reactor that uses laminar flow to study chemical reactions and process mechanisms. A laminar flow design for animal husbandry of rats for disease management was developed by Beall et al. 1971 and became a standard around the world [9] including in the then-Eastern Bloc. [10]
Under laminar flow conditions, the assumption of plug flow is highly inaccurate, as the fluid traveling through the center of the tube moves much faster than the fluid at the wall. The continuous oscillatory baffled reactor (COBR) achieves thorough mixing by the combination of fluid oscillation and orifice baffles, allowing plug flow to be ...
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
At low Reynolds numbers, flow tends towards laminar flow, whereas at high numbers turbulence results from differences in fluid speed. In general, laminar flow occurs when Re < 2300 and turbulent flow occurs when Re >4000. In the interval, both laminar and turbulent flows are possible and these are called transition flows.
A standard COBR consists of a 10-150mm ID tube with equally spaced baffles throughout. There are typically two pumps in a COBR; one pump is reciprocating to generate continuous oscillatory flow and a second pump creates net flow through the tube. This design offers a control over mixing intensity that conventional tubular reactors cannot ...
Ad
related to: laminar flow vs plug flow gas pump temperature