Search results
Results from the WOW.Com Content Network
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
Many of the following antiderivatives have a term of the form ln |ax + b|. Because this is undefined when x = −b / a, the most general form of the antiderivative replaces the constant of integration with a locally constant function. [1] However, it is conventional to omit this from the notation.
Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance.
Unlike Example 1, f(x) is unbounded in any interval containing 0, so the Riemann integral is undefined. If f(x) is the function in Example 1 and F is its antiderivative, and {} is a dense countable subset of the open interval (,), then the function = = has an antiderivative = = ().
The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [ 2 ]
If the real line were not connected, one would not always be able to integrate from our fixed a to any given x. For example, if one were to ask for functions defined on the union of intervals [0,1] and [2,3], and if a were 0, then it would not be possible to integrate from 0 to 3, because the function is not defined between 1 and 2.