enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    In general, convergence in distribution does not imply that the sequence of corresponding probability density functions will also converge. As an example one may consider random variables with densities f n (x) = (1 + cos(2πnx))1 (0,1).

  3. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Series with sequences of partial sums that converge to a value but whose terms could be rearranged to a form a series with partial sums that converge to some other value are called conditionally convergent series. Those that converge to the same value regardless of rearrangement are called unconditionally convergent series.

  5. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    converges if and only if the sequence of partial sums is a Cauchy sequence. This means that for every ε > 0 , {\displaystyle \varepsilon >0,} there is a positive integer N {\displaystyle N} such that for all n ≥ m ≥ N {\displaystyle n\geq m\geq N} we have

  6. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    A sequence that does not converge is said to be divergent. [3] The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. [1] Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers.

  7. Weierstrass M-test - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_M-test

    In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely.It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers.

  8. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    The most basic type of convergence for a sequence of functions (in particular, it does not assume any topological structure on the domain of the functions) is pointwise convergence. It is defined as convergence of the sequence of values of the functions at every point.

  9. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    Cauchy's convergence test can only be used in complete metric spaces (such as and ), which are spaces where all Cauchy sequences converge. This is because we need only show that its elements become arbitrarily close to each other after a finite progression in the sequence to prove the series converges.