Search results
Results from the WOW.Com Content Network
The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface. [n 1] These definitions generally include the fluid properties of density and viscosity, plus a velocity and a characteristic length or characteristic dimension (L in the above equation). This dimension is ...
The TKE can be defined to be half the sum of the variances σ² (square of standard deviations σ) of the fluctuating velocity components: = (+ +) = ((′) ¯ + (′) ¯ + (′) ¯), where each turbulent velocity component is the difference between the instantaneous and the average velocity: ′ = ¯ (Reynolds decomposition).
From the equation it is shown that for a flow with a large Reynolds Number there will be a correspondingly small convective boundary layer compared to the vessel’s characteristic length. [5] By knowing the Reynolds and Womersley numbers for a given flow it is possible to calculate both the transient and the convective boundary layer ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The Reynolds-averaged Navier–Stokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds. [1] The RANS equations ...
One class of models, closely related to the concept of turbulent viscosity, are the k-epsilon turbulence models, based upon coupled transport equations for the turbulent energy density (similar to the turbulent pressure, i.e. the trace of the Reynolds stress) and the turbulent dissipation rate .
In computational fluid dynamics, the k–omega (k–ω) turbulence model [10] is a common two-equation turbulence model that is used as a closure for the Reynolds-averaged Navier–Stokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first ...
and consequently, the number of time steps grows also as a power law of the Reynolds number. One can estimate that the number of floating-point operations required to complete the simulation is proportional to the number of mesh points and the number of time steps, and in conclusion, the number of operations grows as R e 3 {\displaystyle ...