enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  3. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO works on all platforms and with Python 2.7 and 3+. By default, the problem is sent to a public server where the solution is computed and returned to Python. There are Windows, MacOS, Linux, and ARM (Raspberry Pi) processor options to solve without an Internet connection.

  4. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS is open-source software to solve linear programming (LP), mixed-integer programming (MIP), and convex quadratic programming (QP) models. [1] Written in C++ and published under an MIT license, HiGHS provides programming interfaces to C, Python, Julia, Rust, R, JavaScript, Fortran, and C#. It has no external dependencies. A convenient thin ...

  5. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    To see this, note that the two constraints x 1 (x 11) ≤ 0 and x 1 (x 11) ≥ 0 are equivalent to the constraint x 1 (x 11) = 0, which is in turn equivalent to the constraint x 1 ∈ {0, 1}. Hence, any 0–1 integer program (in which all variables have to be either 0 or 1) can be formulated as a quadratically constrained ...

  6. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    The NAG Library has routines for both local and global optimization, and for continuous or integer problems. Python: High-level programming language with bindings for most available solvers. Quadratic programming is available via the solve_qp function or by calling a specific solver directly. R (Fortran)

  7. LP-type problem - Wikipedia

    en.wikipedia.org/wiki/LP-type_problem

    LP-type problems include many important optimization problems that are not themselves linear programs, such as the problem of finding the smallest circle containing a given set of planar points. They may be solved by a combination of randomized algorithms in an amount of time that is linear in the number of elements defining the problem, and ...

  8. Dantzig–Wolfe decomposition - Wikipedia

    en.wikipedia.org/wiki/Dantzig–Wolfe_decomposition

    The master program incorporates one or all of the new columns generated by the solutions to the subproblems based on those columns' respective ability to improve the original problem's objective. Master program performs x iterations of the simplex algorithm, where x is the number of columns incorporated. If objective is improved, goto step 1.

  9. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    If sub-problems can be nested recursively inside larger problems, so that dynamic programming methods are applicable, then there is a relation between the value of the larger problem and the values of the sub-problems. [1] In the optimization literature this relationship is called the Bellman equation.