enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum optics - Wikipedia

    en.wikipedia.org/wiki/Quantum_optics

    Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons.

  3. Quantum entanglement - Wikipedia

    en.wikipedia.org/wiki/Quantum_entanglement

    Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance.

  4. Quantum eraser experiment - Wikipedia

    en.wikipedia.org/wiki/Quantum_eraser_experiment

    This experiment involves an apparatus with two main sections. After two entangled photons are created, each is directed into its own section of the apparatus. Anything done to learn the path of the entangled partner of the photon being examined in the double-slit part of the apparatus will influence the second photon, and vice versa.

  5. Entanglement swapping - Wikipedia

    en.wikipedia.org/wiki/Entanglement_swapping

    Entanglement swapping has two pairs of entangled particles: (A, B) and (C, D). Pair of particles (A, B) is initially entangled, as is the pair (C, D). The pair (B, C) taken from the original pairs, is projected onto one of the four possible Bell states, a process called a Bell state measurement. The unmeasured pair of particles (A, D) can ...

  6. Delayed-choice quantum eraser - Wikipedia

    en.wikipedia.org/wiki/Delayed-choice_quantum_eraser

    The total pattern of all signal photons at D 0, whose entangled idlers went to multiple different detectors, will never show interference regardless of what happens to the idler photons. [20] One can get an idea of how this works by looking at the graphs of R 01 , R 02 , R 03 , and R 04 , and observing that the peaks of R 01 line up with the ...

  7. Quantum decoherence - Wikipedia

    en.wikipedia.org/wiki/Quantum_decoherence

    In classical scattering of a target body by environmental photons, the motion of the target body will not be changed by the scattered photons on the average. In quantum scattering, the interaction between the scattered photons and the superposed target body will cause them to be entangled, thereby delocalizing the phase coherence from the target body to the whole system, rendering the ...

  8. Aspect's experiment - Wikipedia

    en.wikipedia.org/wiki/Aspect's_experiment

    In 1964, Irish physicist John Stewart Bell carried the analysis of quantum entanglement much further. [5] He deduced that if measurements are performed independently on the two separated particles of an entangled pair, then the assumption that the outcomes depend upon hidden variables within each half implies a mathematical constraint on how the outcomes on the two measurements are correlated.

  9. Quantum information - Wikipedia

    en.wikipedia.org/wiki/Quantum_information

    His scheme uses entangled pairs of photons. These two photons can be created by Alice, Bob, or by a third party including eavesdropper Eve. One of the photons is distributed to Alice and the other to Bob so that each one ends up with one photon from the pair. This scheme relies on two properties of quantum entanglement: