Search results
Results from the WOW.Com Content Network
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...
Examples: The column-14 operator (OR), shows Addition rule : when p =T (the hypothesis selects the first two lines of the table), we see (at column-14) that p ∨ q =T. We can see also that, with the same premise, another conclusions are valid: columns 12, 14 and 15 are T.
For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q , or the falsity of Q ensures the falsity of P .) [ 1 ] Similarly, P is sufficient for Q , because P being true always implies that Q is true, but P not being ...
A well-formed formula is any atomic formula, or any formula that can be built up from atomic formulas by means of operator symbols according to the rules of the grammar. The language L {\displaystyle {\mathcal {L}}} , then, is defined either as being identical to its set of well-formed formulas, [ 48 ] or as containing that set (together with ...
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
Declarative solutions are easier to understand than imperative solutions, [12] and there has been a long-term trend from imperative to declarative methods. [13] [14] Formula calculators are part of this trend. Many software tools for the general user, such as spreadsheets, are declarative. Formula calculators are examples of such tools.
A propositional formula may also be called a propositional expression, a sentence, [1] or a sentential formula. A propositional formula is constructed from simple propositions, such as "five is greater than three" or propositional variables such as p and q, using connectives or logical operators such as NOT, AND, OR, or IMPLIES; for example:
The material conditional (also known as material implication) is an operation commonly used in logic.When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false.