Search results
Results from the WOW.Com Content Network
In probability and statistics, the Kumaraswamy's double bounded distribution is a family of continuous probability distributions defined on the interval (0,1). It is similar to the beta distribution, but much simpler to use especially in simulation studies since its probability density function, cumulative distribution function and quantile functions can be expressed in closed form.
It serves as an alternative to the beta and Kumaraswamy distributions for modeling double-bounded random variables. The MK distribution was originally proposed by Sagrillo, Guerra, and Bayer [1] through a transformation of the Kumaraswamy distribution. Its density exhibits an increasing-decreasing-increasing shape, which is not characteristic ...
In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind [1]) is an absolutely continuous probability distribution. If [,] has a beta distribution, then the odds has a beta prime distribution.
T. Bdiri et al. have developed several models that use the inverted Dirichlet distribution to represent and model non-Gaussian data. They have introduced finite [3] [4] and infinite [5] mixture models of inverted Dirichlet distributions using the Newton–Raphson technique to estimate the parameters and the Dirichlet process to model infinite ...
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.
The complex inverse Wishart distribution is a matrix probability distribution defined on complex-valued positive-definite matrices and is the complex analog of the real inverse Wishart distribution. The complex Wishart distribution was extensively investigated by Goodman [ 1 ] while the derivation of the inverse is shown by Shaman [ 2 ] and others.
The Fréchet distribution, also known as inverse Weibull distribution, [2] [3] is a special case of the generalized extreme value distribution. It has the cumulative distribution function It has the cumulative distribution function