enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    For steady, level flight, the integrated force due to the pressure differences is equal to the total aerodynamic lift of the airplane and to the airplane's weight. According to Newton's third law, this pressure force exerted on the ground by the air is matched by an equal-and-opposite upward force exerted on the air by the ground, which offsets ...

  3. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    It is also useful to show the relationship between section lift coefficient and drag coefficient. The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of L ′ {\displaystyle L^{\prime }} , the lift force ...

  4. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The "Streamline curvature theorem" states that the pressure at the upper surface of an airfoil is lower than the pressure far away and that the pressure at the lower surface is higher than the pressure far away; hence the pressure difference between the upper and lower surfaces of an airfoil generates a lift force.

  5. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    Hence the vortex force line map clearly shows whether a given vortex is lift producing or lift detrimental. Lagally theorem When a (mass) source is fixed outside the body, a force correction due to this source can be expressed as the product of the strength of outside source and the induced velocity at this source by all the causes except this ...

  6. Magnus effect - Wikipedia

    en.wikipedia.org/wiki/Magnus_effect

    Backspin produces an upwards force that prolongs the flight of a moving ball. [4] Likewise side-spin causes swerve to either side as seen during some baseball pitches, e.g. slider. [5] The overall behaviour is similar to that around an aerofoil (see lift force), but with a circulation generated by mechanical rotation rather than shape of the ...

  7. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    The difference between these groups is the aerodynamic force that is used to extract the energy. The most common topology is the horizontal-axis wind turbine. It is a lift-based wind turbine with very good performance. Accordingly, it is a popular choice for commercial applications and much research has been applied to this turbine.

  8. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    If there is no resultant force acting on the particle, F = 0, it does not accelerate, but moves with constant velocity in a straight line. Mathematically, the solutions of the differential equation are geodesics, the curves of extremal length between two points in space (these may end up being minimal, that is the shortest paths, but not ...

  9. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...