enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R which is not a unit can be written as a finite product of irreducible elements p i of R: x = p 1 p 2 ⋅⋅⋅ p n with n ≥ 1. and this representation is unique in the following sense: If q 1, ..., q m are irreducible elements ...

  3. Noncommutative unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Noncommutative_unique...

    1 Examples. 2 References. 3 Notes. ... In mathematics, a noncommutative unique factorization domain is a noncommutative ring with the unique factorization property.

  4. Special number field sieve - Wikipedia

    en.wikipedia.org/wiki/Special_number_field_sieve

    There is a unique ring homomorphism φ from Z[α] to Z/nZ that maps α to m. For simplicity, we'll assume that Z[α] is a unique factorization domain; the algorithm can be modified to work when it isn't, but then there are some additional complications. Next, we set up two parallel factor bases, one in Z[α] and one in Z.

  5. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In the case of coefficients in a unique factorization domain R, "rational numbers" must be replaced by "field of fractions of R". This implies that, if R is either a field, the ring of integers, or a unique factorization domain, then every polynomial ring (in one or several indeterminates) over R is a unique factorization domain. Another ...

  6. Regular local ring - Wikipedia

    en.wikipedia.org/wiki/Regular_local_ring

    Examples of regular rings include fields (of dimension zero) and Dedekind domains. If A is regular then so is A [ X ], with dimension one greater than that of A . In particular if k is a field, the ring of integers, or a principal ideal domain , then the polynomial ring k [ X 1 , … , X n ] {\displaystyle k[X_{1},\ldots ,X_{n}]} is regular.

  7. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    As the positive integers less than s have been supposed to have a unique prime factorization, must occur in the factorization of either or Q. The latter case is impossible, as Q , being smaller than s , must have a unique prime factorization, and p 1 {\displaystyle p_{1}} differs from every q j . {\displaystyle q_{j}.}

  8. Square-free element - Wikipedia

    en.wikipedia.org/wiki/Square-free_element

    The unique factorization property means that a non-zero non-unit r can be represented as a product of prime elements r = p 1 p 2 ⋯ p n {\displaystyle r=p_{1}p_{2}\cdots p_{n}} Then r is square-free if and only if the primes p i are pairwise non-associated (i.e. that it doesn't have two of the same prime as factors, which would make it ...

  9. Fundamental theorem of ideal theory in number fields

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In number theory, the fundamental theorem of ideal theory in number fields states that every nonzero proper ideal in the ring of integers of a number field admits unique factorization into a product of nonzero prime ideals. In other words, every ring of integers of a number field is a Dedekind domain.