enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific strength - Wikipedia

    en.wikipedia.org/wiki/Specific_strength

    It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.

  3. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

  4. Stress–strength analysis - Wikipedia

    en.wikipedia.org/wiki/Stressstrength_analysis

    Probability density of stress S (red, top) and resistance R (blue, top), and of equality (m = R - S = 0, black, bottom). Distribution of stress S and strength R: all the (R, S) situations have a probability density (grey level surface). The area where the margin m = R - S is positive is the set of situation where the system is reliable (R > S).

  5. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    As shown later in this article, at the onset of yielding, the magnitude of the shear yield stress in pure shear is √3 times lower than the tensile yield stress in the case of simple tension. Thus, we have: = where is tensile yield strength of the material. If we set the von Mises stress equal to the yield strength and combine the above ...

  6. Rule of mixtures - Wikipedia

    en.wikipedia.org/wiki/Rule_of_mixtures

    In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material. [1] [2] [3] It provides a theoretical upper- and lower-bound on properties such as the elastic modulus, ultimate tensile strength, thermal conductivity, and electrical conductivity. [3]

  7. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression.. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.

  8. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    Calculate stresses: For each strained configuration, run a DFT calculation to compute the resulting stress tensor. This involves solving the Kohn-Sham equations to find the ground state electron density and energy under the strained conditions; Stress-strain curve: Plot the calculated stress versus the applied strain to create a stress-strain ...

  9. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...