Ad
related to: definition of a regular graph in science examples for kids freeteacherspayteachers.com has been visited by 100K+ users in the past month
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Lessons
Powerpoints, pdfs, and more to
support your classroom instruction.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Try Easel
Search results
Results from the WOW.Com Content Network
A strongly regular graph is a regular graph where every adjacent pair of vertices has the same number l of neighbors in common, and every non-adjacent pair of vertices has the same number n of neighbors in common. The smallest graphs that are regular but not strongly regular are the cycle graph and the circulant graph on 6 vertices.
The web graph W n,r is a graph consisting of r concentric copies of the cycle graph C n, with corresponding vertices connected by "spokes". Thus W n,1 is the same graph as C n, and W n,2 is a prism. A web graph has also been defined as a prism graph Y n+1, 3, with the edges of the outer cycle removed. [7] [10]
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
regular A graph is d-regular when all of its vertices have degree d. A regular graph is a graph that is d-regular for some d. regular tournament A regular tournament is a tournament where in-degree equals out-degree for all vertices. reverse See transpose. root 1. A designated vertex in a graph, particularly in directed trees and rooted graphs. 2.
In the mathematical discipline of graph theory, a graph labeling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. [ 1 ] Formally, given a graph G = ( V , E ) , a vertex labeling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph .
In graph theory, a walk-regular graph is a simple graph where the number of closed walks of any length from a vertex to itself does only depend on but not depend on the choice of vertex. Walk-regular graphs can be thought of as a spectral graph theory analogue of vertex-transitive graphs .
Pages in category "Regular graphs" The following 119 pages are in this category, out of 119 total. This list may not reflect recent changes. * Regular graph; 0–9.
In the mathematical field of graph theory, a distance-regular graph is a regular graph such that for any two vertices v and w, the number of vertices at distance j from v and at distance k from w depends only upon j, k, and the distance between v and w. Some authors exclude the complete graphs and disconnected graphs from this definition.
Ad
related to: definition of a regular graph in science examples for kids freeteacherspayteachers.com has been visited by 100K+ users in the past month