Search results
Results from the WOW.Com Content Network
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
In logic, a rule of replacement [1] [2] [3] is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a ...
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule : when p =T (the hypothesis selects the first two lines of the table), we see (at column-14) that p ∨ q =T.
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
De Morgan algebras are important for the study of the mathematical aspects of fuzzy logic. The standard fuzzy algebra F = ([0, 1], max( x , y ), min( x , y ), 0, 1, 1 − x ) is an example of a De Morgan algebra where the laws of excluded middle and noncontradiction do not hold.
Repeated application of distributivity may exponentially increase the size of a formula. In the classical propositional logic, transformation to negation normal form does not impact computational properties: the satisfiability problem continues to be NP-complete, and the validity problem continues to be co-NP-complete. For formulas in ...
The principle of inclusion–exclusion, combined with De Morgan's law, can be used to count the cardinality of the intersection of sets as well. Let A k ¯ {\displaystyle {\overline {A_{k}}}} represent the complement of A k with respect to some universal set A such that A k ⊆ A {\displaystyle A_{k}\subseteq A} for each k .
De Morgan's laws are examples. More generally, ∧ (¬ x i) = ¬ ∨ x i. The left side is true if and only if ∀i.¬x i, and the right side if and only if ¬∃i.x i. In modal logic, p means that the proposition p is "necessarily" true, and p that p is "possibly" true. Most interpretations of modal logic assign dual meanings to these two ...