enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (tree with no nodes, if such are allowed) has height −1.

  3. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A labeled binary tree of size 9 (the number of nodes in the tree) and height 3 (the height of a tree defined as the number of edges or links from the top-most or root node to the farthest leaf node), with a root node whose value is 1.

  4. Random binary tree - Wikipedia

    en.wikipedia.org/wiki/Random_binary_tree

    For binary trees, two versions of the Galton–Watson process are in use, differing only in whether an extended binary tree with only one node, an external root node, is allowed: In the version where the root node may be external, it is chosen to be internal with some specified probability p {\displaystyle p} or external with probability 1 − ...

  5. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    To traverse arbitrary trees (not necessarily binary trees) with depth-first search, perform the following operations at each node: If the current node is empty then return. Visit the current node for pre-order traversal. For each i from 1 to the current node's number of subtrees − 1, or from the latter to the former for reverse traversal, do:

  6. Rotation distance - Wikipedia

    en.wikipedia.org/wiki/Rotation_distance

    Tree rotation. A binary tree is a structure consisting of a set of nodes, one of which is designated as the root node, in which each remaining node is either the left child or right child of some other node, its parent, and in which following the parent links from any node eventually leads to the root node.

  7. Level ancestor problem - Wikipedia

    en.wikipedia.org/wiki/Level_ancestor_problem

    The level ancestor query LA(v,d) requests the ancestor of node v at depth d, where the depth of a node v in a tree is the number of edges on the shortest path from the root of the tree to node v. It is possible to solve this problem in constant time per query, after a preprocessing algorithm that takes O( n ) and that builds a data structure ...

  8. Link/cut tree - Wikipedia

    en.wikipedia.org/wiki/Link/cut_tree

    Link/cut trees divide each tree in the represented forest into vertex-disjoint paths, where each path is represented by an auxiliary data structure (often splay trees, though the original paper predates splay trees and thus uses biased binary search trees). The nodes in the auxiliary data structure are ordered by their depth in the ...

  9. Ternary tree - Wikipedia

    en.wikipedia.org/wiki/Ternary_tree

    Height - Length of the path from the root to the deepest node in the tree. A (rooted) tree with only one node (the root) has a height of zero. In the example diagram, the tree has height of 2. Sibling - Nodes that share the same parent node. A node p is an ancestor of a node q if it exists on the path from q to the root. The node q is then ...