Search results
Results from the WOW.Com Content Network
Phase velocity, the velocity at which a wave phase propagates; Pulse wave velocity, the velocity at which a pulse travels through a medium, usually applied to arteries as a measure of arterial stiffness; Group velocity, the propagation velocity for the envelope of wave groups and often of wave energy, different from the phase velocity for ...
The stationary wave can be viewed as the sum of two traveling sinusoidal waves of oppositely directed velocities. [8] Consequently, wavelength, period, and wave velocity are related just as for a traveling wave. For example, the speed of light can be determined from observation of standing waves in a metal box containing an ideal vacuum.
S wave velocity is equal to: / S wave velocity is entirely dependent on the rigidity of the material it travels through. Liquids have zero rigidity, making the S wave velocity zero when traveling through a liquid. Overall, S waves are shear waves, and shear stress is a type of deformation that cannot occur in a liquid.
The significant wave height is also the value a "trained observer" (e.g. from a ship's crew) would estimate from visual observation of a sea state. Given the variability of wave height, the largest individual waves are likely to be somewhat less than twice the significant wave height. [2] The phases of an ocean surface wave: 1.
The group velocity is positive (i.e., the envelope of the wave moves rightward), while the phase velocity is negative (i.e., the peaks and troughs move leftward). The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space.
In multidimensional systems, the wavenumber is the magnitude of the wave vector. The space of wave vectors is called reciprocal space. Wave numbers and wave vectors play an essential role in optics and the physics of wave scattering, such as X-ray diffraction, neutron diffraction, electron diffraction, and elementary particle physics.
Time of flight (ToF) is the measurement of the time taken by an object, particle or wave (be it acoustic, electromagnetic, etc.) to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a way to learn about the particle or medium's properties (such as composition or flow rate).
Generally, skewed waves have a short and high wave crest and a long and flat wave trough. [6] A skewed wave shape results in larger orbital velocities under the wave crest compared to smaller orbital velocities under the wave trough. For waves having the same velocity variance, the ones with higher skewness result in a larger net sediment ...