Search results
Results from the WOW.Com Content Network
Ultra low expansion glass has an coefficient of thermal expansion of about 10 −8 /K at 5–35 °C. [2] It has a thermal conductivity of 1.31 W/(m·°C), thermal diffusion of 0.0079 cm 2 /s, a mean specific heat of 767 J/(kg·°C), a strain point of 890 °C [1634 °F], and an estimated softening point of 1490 °C [2714 °F], an annealing point ...
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
Finally, Kapustinskii noted that the Madelung constant, M, was approximately 0.88 times the number of ions in the empirical formula. [2] The derivation of the later form of the Kapustinskii equation followed similar logic, starting from the quantum chemical treatment in which the final term is 1 − d / r 0 where d is as defined above.
The technique is closely related to using gas adsorption to measure pore sizes, but uses the Gibbs–Thomson equation rather than the Kelvin equation.They are both particular cases of the Gibbs Equations of Josiah Willard Gibbs: the Kelvin equation is the constant temperature case, and the Gibbs–Thomson equation is the constant pressure case. [1]
In the field of industrial ultrasonic testing, ultrasonic thickness measurement (UTM) is a method of performing non-destructive measurement (gauging) of the local thickness of a solid element (typically made of metal, if using ultrasound testing for industrial purposes) based on the time taken by the ultrasound wave to return to the surface.
The theoretical molar yield is 2.0 mol (the molar amount of the limiting compound, acetic acid). The molar yield of the product is calculated from its weight (132 g ÷ 88 g/mol = 1.5 mol). The % yield is calculated from the actual molar yield and the theoretical molar yield (1.5 mol ÷ 2.0 mol × 100% = 75%). [citation needed]
In one dimension, the constitutive equation of the Herschel-Bulkley model after the yield stress has been reached can be written in the form: [3] [4] ˙ =, < = + ˙, where is the shear stress [Pa], the yield stress [Pa], the consistency index [Pa s], ˙ the shear rate [s], and the flow index [dimensionless].
The Klein–Nishina formula was derived in 1928 by Oskar Klein and Yoshio Nishina, and was one of the first results obtained from the study of quantum electrodynamics. Consideration of relativistic and quantum mechanical effects allowed development of an accurate equation for the scattering of radiation from a target electron.