enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Counterexample - Wikipedia

    en.wikipedia.org/wiki/Counterexample

    "All shapes that are rectangles are squares." "All shapes that have four sides of equal length are squares". A counterexample to (1) was already given above, and a counterexample to (2) is a non-square rhombus. Thus, the mathematician now knows that each assumption by itself is insufficient.

  3. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    Firstly it works for arbitrary triangles rather than only for right angled ones and secondly it uses parallelograms rather than squares. For squares on two sides of an arbitrary triangle it yields a parallelogram of equal area over the third side and if the two sides are the legs of a right angle the parallelogram over the third side will be ...

  4. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    For the general quadrilateral (with four sides not necessarily equal) Euler's quadrilateral theorem states + + + = + +, where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.

  5. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all ...

  6. Quadrature (geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrature_(geometry)

    A similar geometrical construction solves the problems of quadrature of a parallelogram and of a triangle. Archimedes proved that the area of a parabolic segment is 4/3 the area of an inscribed triangle. Problems of quadrature for curvilinear figures are much more difficult.

  7. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Informally: "a box or oblong" (including a square). Square (regular quadrilateral): all four sides are of equal length (equilateral), and all four angles are right angles. An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length.

  8. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    The first property implies that every rhombus is a parallelogram. A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the ...

  9. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    The equidissection problem concerns the subdivision of polygons into triangles that all have equal areas. In this context, the spectrum of a polygon is the set of numbers such that the polygon has an equidissection into equal-area triangles. Because of its symmetry, the spectrum of a kite contains all even integers.