enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Odds algorithm - Wikipedia

    en.wikipedia.org/wiki/Odds_algorithm

    The odds strategy is the rule to observe the events one after the other and to stop on the first interesting event from index s onwards (if any), where s is the stopping threshold of output a. The importance of the odds strategy, and hence of the odds algorithm, lies in the following odds theorem.

  3. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to ...

  4. Odds - Wikipedia

    en.wikipedia.org/wiki/Odds

    The true odds against winning for each of the three horses are 1–1, 3–2 and 9–1, respectively. In order to generate a profit on the wagers accepted, the bookmaker may decide to increase the values to 60%, 50% and 20% for the three horses, respectively. This represents the odds against each, which are 4–6, 1–1 and 4–1, in order.

  5. Monty Hall problem - Wikipedia

    en.wikipedia.org/wiki/Monty_Hall_problem

    The game host then opens one of the other doors, say 3, to reveal a goat and offers to let the player switch from door 1 to door 2. The Monty Hall problem is a brain teaser, in the form of a probability puzzle, based nominally on the American television game show Let's Make a Deal and named after its original host, Monty Hall.

  6. Poker probability - Wikipedia

    en.wikipedia.org/wiki/Poker_probability

    In statistics, this is called odds against. For instance, with a royal flush, there are 4 ways to draw one, and 2,598,956 ways to draw something else, so the odds against drawing a royal flush are 2,598,956 : 4, or 649,739 : 1. The formula for establishing the odds can also be stated as (1/p) - 1 : 1, where p is the aforementioned probability.

  7. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    For example, rolling an honest die produces one of six possible results. One collection of possible results corresponds to getting an odd number. Thus, the subset {1,3,5} is an element of the power set of the sample space of dice rolls. These collections are called events. In this case, {1,3,5} is the event that the die falls on some odd number.

  8. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...

  9. Event (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Event_(probability_theory)

    An event, however, is any subset of the sample space, including any singleton set (an elementary event), the empty set (an impossible event, with probability zero) and the sample space itself (a certain event, with probability one). Other events are proper subsets of the sample space that contain multiple elements. So, for example, potential ...