enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kapustinskii equation - Wikipedia

    en.wikipedia.org/wiki/Kapustinskii_equation

    The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.

  3. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    ε 0 = permittivity of free space 4 π ε 0 = 1.112 × 10 −10 C 2 /(J·m) r = distance separating the ion centers. For a simple lattice consisting ions with equal and opposite charge in a 1:1 ratio, interactions between one ion and all other lattice ions need to be summed to calculate E M, sometimes called the Madelung or lattice energy:

  4. Lattice energy - Wikipedia

    en.wikipedia.org/wiki/Lattice_energy

    In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids.

  5. Lattice constant - Wikipedia

    en.wikipedia.org/wiki/Lattice_constant

    Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.

  6. Born–Mayer equation - Wikipedia

    en.wikipedia.org/wiki/Born–Mayer_equation

    The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound. It is a refinement of the Born–Landé equation by using an improved repulsion term.

  7. Lattice Boltzmann methods - Wikipedia

    en.wikipedia.org/wiki/Lattice_Boltzmann_methods

    In most Lattice Boltzmann simulations is the basic unit for lattice spacing, so if the domain of length has lattice units along its entire length, the space unit is simply defined as = /. Speeds in lattice Boltzmann simulations are typically given in terms of the speed of sound.

  8. Vegard's law - Wikipedia

    en.wikipedia.org/wiki/Vegard's_law

    Here, a A (1-x) B x is the lattice parameter of the solid solution, a A and a B are the lattice parameters of the pure constituents, and x is the molar fraction of B in the solid solution. Vegard's law is seldom perfectly obeyed; often deviations from the linear behavior are observed. A detailed study of such deviations was conducted by King. [3]

  9. UNIQUAC - Wikipedia

    en.wikipedia.org/wiki/UNIQUAC

    The combinatorial contribution accounts for shape differences between molecules and affects the entropy of the mixture and is based on the lattice theory. The Stavermann–Guggenheim equation is used to approximate this term from pure chemical parameters, using the relative Van der Waals volumes r i and surface areas q i [nb 2] of the pure ...