Search results
Results from the WOW.Com Content Network
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
Some chemistry textbooks [3] as well as the widely used CRC Handbook of Chemistry and Physics [4] define lattice energy with the opposite sign, i.e. as the energy required to convert the crystal into infinitely separated gaseous ions in vacuum, an endothermic process. Following this convention, the lattice energy of NaCl would be +786 kJ/mol.
ε 0 = permittivity of free space 4 π ε 0 = 1.112 × 10 −10 C 2 /(J·m) r = distance separating the ion centers. For a simple lattice consisting ions with equal and opposite charge in a 1:1 ratio, interactions between one ion and all other lattice ions need to be summed to calculate E M, sometimes called the Madelung or lattice energy:
The unit cell is defined as the smallest repeating unit having the full symmetry of the crystal structure. [2] The geometry of the unit cell is defined as a parallelepiped, providing six lattice parameters taken as the lengths of the cell edges (a, b, c) and the angles between them (α, β, γ).
Flory–Huggins solution theory is a lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecular sizes in adapting the usual expression for the entropy of mixing. The result is an equation for the Gibbs free energy change for mixing a polymer with a solvent. Although it makes simplifying ...
The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.
The proper calculation of electrostatic lattice constants has to consider the crystallographic point groups of ionic lattice sites; for instance, dipole moments may only arise on polar lattice sites, i. e. exhibiting a C 1, C 1h, C n or C nv site symmetry (n = 2, 3, 4 or 6). [11]
A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as 1 / n of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain 1 / 8 of each of them. [3]