Search results
Results from the WOW.Com Content Network
In case 2, the rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ratio is from unity, the more quickly the continued fraction converges. This general solution of monic quadratic equations with complex coefficients is usually not very useful for obtaining rational approximations to the roots ...
A quadratic equation has at most two solutions. If there is only one solution, one says that it is a double root. If all the coefficients are real numbers, there are either two real solutions, or a single real double root, or two complex solutions that are complex conjugates of each other. A quadratic equation always has two roots, if complex ...
It addition to standard features such as trigonometric functions, exponents, logarithm, and intelligent order of operations found in TI-30 and TI-34 series of calculators, it also include base (decimal, hexadecimal, octal, binary) calculations, complex values, statistics. Conversions include polar-rectangular coordinates (P←→R), angles.
The two inverses of tetration are called super-root and super-logarithm, analogous to the nth root and the logarithmic functions. None of the three functions are elementary . Tetration is used for the notation of very large numbers .
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Exponential functions occur very often in solutions of differential equations. The exponential functions can be defined as solutions of differential equations. Indeed, the exponential function is a solution of the simplest possible differential equation, namely ′ = .
The relationship to the continued fractions implies that the solutions to Pell's equation form a semigroup subset of the modular group. Thus, for example, if p and q satisfy Pell's equation, then is a matrix of unit determinant. Products of such matrices take exactly the same form, and thus all such products yield solutions to Pell's equation.
All quadratic equations will have two solutions in the complex number system, but need not have any in the real number system. For example, + = has no real number solution since no real number squared equals −1. Sometimes a quadratic equation has a root of multiplicity 2, such as: (+) =