enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equilibrant force - Wikipedia

    en.wikipedia.org/wiki/Equilibrant_Force

    Force A points to the west and has a magnitude of 10 N and is represented by the vector <-10, 0>N. Force B points to the south and has a magnitude of 8.0 N and is represented by the vector <0, -8>N. Since these forces are vectors, they can be added by using the parallelogram rule [3] or vector addition.

  3. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    In general, if a vector [a 1, a 2, a 3] is represented as the quaternion a 1 i + a 2 j + a 3 k, the cross product of two vectors can be obtained by taking their product as quaternions and deleting the real part of the result. The real part will be the negative of the dot product of the two vectors.

  4. Net force - Wikipedia

    en.wikipedia.org/wiki/Net_force

    [1] When forces act upon an object, they change its acceleration. The net force is the combined effect of all the forces on the object's acceleration, as described by Newton's second law of motion. When the net force is applied at a specific point on an object, the associated torque can be calculated.

  5. Resultant force - Wikipedia

    en.wikipedia.org/wiki/Resultant_force

    The forces and torques acting on a rigid body can be assembled into the pair of vectors called a wrench. [3] If a system of forces and torques has a net resultant force F and a net resultant torque T, then the entire system can be replaced by a force F and an arbitrarily located couple that yields a torque of T.

  6. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    This article uses the convention that vectors are denoted in a bold font (e.g. a 1), and scalars are written in normal font (e.g. a 1). The dot product of vectors a and b is written as a ⋅ b {\displaystyle \mathbf {a} \cdot \mathbf {b} } , the norm of a is written ‖ a ‖, the angle between a and b is denoted θ .

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.

  9. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    Figure 1: Parallelogram construction for adding vectors. This construction has the same result as moving F 2 so its tail coincides with the head of F 1, and taking the net force as the vector joining the tail of F 1 to the head of F 2. This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth.