Search results
Results from the WOW.Com Content Network
According to a study a human at 70 kg (150 lb) requires about 60 watts to walk at 5 km/h (3.1 mph) on firm and flat ground, [6] while according to a calculator at kreuzotter.de the same person and power output on an ordinary bicycle will travel at 15 km/h (9.3 mph), [7] so in these conditions the energy expenditure of cycling is about one-third ...
Power-to-weight ratio (PWR, also called specific power, or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement of actual performance of any engine or power source.
VAM is a parameter used in cycling as a measure of fitness and speed; it is useful for relatively objective comparisons of performances and estimating a rider's power output per kilogram of body mass, which is one of the most important qualities of a cyclist who competes in stage races and other mountainous [citation needed] events. Dr.
The SI unit for specific energy is the joule per kilogram (J/kg). Other units still in use worldwide in some contexts are the kilocalorie per gram (Cal/g or kcal/g), mostly in food-related topics, and watt-hours per kilogram (W⋅h/kg) in the field of batteries.
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter ...
Fix these common indoor cycling setup mistakes and you could be cranking out more power than you even knew you had.
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m 2 ⋅s −3. [ 1 ] [ 2 ] [ 3 ] It is used to quantify the rate of energy transfer .